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Abstract. The European Green Deal has set ambitious short-term tar-
gets for reducing CO2 emissions and achieving climate neutrality. In
communal living spaces, the associated challenges involve the exploita-
tion of energy from renewable sources in order to reduce indirect CO»
emissions caused by grid electricity consumption, and the satisfaction
of the residents, with their individual appliance-scheduling preferences
that often conflict with their objective of minimizing associated billing
charges. This paper tackles this multi-objective optimization problem by
proposing a multi-objective evolutionary algorithm based on decomposi-
tion with decision making. The algorithm produces a set of optimal trade-
offs between maximizing the satisfaction of resident appliance-scheduling
preferences and minimizing their billing charges, with decision making
opting for the trade-off offering minimal deviation from the use of green
energy, consequently limiting the COs footprint. Our experimental eval-
uation, based on the energy consumption patterns of 10 UK households
as recorded in the REFIT public dataset, demonstrates that the proposed
approach clearly outperforms alternative state-of-the-art approaches.

Keywords: multi-objective - evolutionary - energy efficiency

1 Introduction

Cities worldwide account for more than 65% of energy consumption and 70% of
COs emissions, a significant part of which is caused by indirect emissions due
to grid electricity consumption! To combat the imminent environmental threats
including global warming, sea-level rise, etc., the European Green Deal aims
at reducing EU emissions by at least 55% by 2030, and establishing Europe as
the first climate neutral continent by 2050. Efficient electrical energy usage is
vital in attaining said targets, requiring action at the foundational level of the

ecosystem, i.e., homes and living spaces.

! Buropean Commission, 2023. EU Mission: Climate-Neutral and Smart Cities. LINK:
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Energy efficiency in communal living spaces is predominantly achieved
through the utilization of green energy from renewable sources and, conse-
quently, a reduction in grid-energy demand which results in a high C O, footprint.
Furthermore, suggested governance practices encourage the involvement of res-
idents as key stakeholders with co-benefits, such as energy demand-satisfaction
and reduced energy costs (See footnote 1). However, objectives related to sat-
isfying energy demands and reducing billing charges are conflicting in nature
since the energy cost of operating any appliance results in a direct increase
in billing charges. Energy management challenges involving conflicting objec-
tives are often tackled through the formulation of Multi-Objective Optimization
(MOO) problems and the use of Evolutionary Multi-Objective Optimization
(EMO) approaches [12,13]. The problem’s complexity is amplified by the rise of
communal living arrangements, which entail multiple residents sharing a single
source of renewable energy.

This work utilizes EMO to produce optimal trade-offs between the resident-
oriented objectives, with the most energy-efficient trade-off selected through
Decision Making. The main contributions of this paper are summarised below:

— We define and formulate a MOO problem that aims at maximizing the sat-
isfaction of the residents’ appliance-scheduling preferences and minimizing
their billing charges. Energy flexibility, i.e., the capacity for energy load to
be shifted or reduced, is incorporated in the problem through a mapping
function that links energy usage to preference satisfaction.

— We propose Green-MOEA/D, a Multi-Objective Evolutionary Algorithm
based on Decomposition, combined with a Mapping Improvement Heuristic
for energy flexibility management, that aims at producing a set of appliance-
usage schedules with optimal trade-offs between the residents’ objectives.

— We propose a Decision Making Heuristic for selecting the best schedule from
the set produced by Green-MOEA /D, for COy emission minimization.

— The experimental evaluation uses realistic resident preference datasets derived
from the consumption patterns of 10 UK households, as found in the REFIT
public dataset, as well as solar energy production datasets. We evaluate
Green-MOEA /D against alternative state-of-the-art approaches, which are
shown to be clearly outperformed.

The remainder of this paper is organised as follows: Sect.2 discusses back-
ground and related work. Section 3 presents the system model, problem defini-
tion and formulation, and the Decision Making Heuristic. Green-MOEA /D and
the Mapping Improvement Heuristic are explained in Sect.4. The experimen-
tal setting and evaluation are presented in Sects. 5 and 6, respectively. Section 7
concludes the paper.

2 Background and Related Work

This section discusses the fundamentals of EMO, and its applications in the
context of energy management for smart homes.
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2.1 Evolutionary Multi-objective Optimization

A Multi-Objective Optimization Problem (MOP) is formulated as follows:

gélgf(x) = (fl(),..,fq(x)), qg=1,..,Q

st. gj(z) <0, j=1,..,J
hm(z) =0, m=1,.,M (1)

where ¢ represents the number of conflicting objectives to be optimized, g; :
X — R denote the inequality constraints, and h,, : X — R denote the equal-
ity constraints. EMO is the branch of optimization that focuses on tackling
MOPs by using evolutionary algorithms. Evolutionary Algorithms (EA) are
population-based optimization methods inspired from the process of natural
evolution, which makes them general, complex, and non-linear. Multi-objective
Evolutionary Algorithms (MOEA) are a special category of EAs for dealing with
MOPs. Because of the multiple conflicting objectives and the inherent trade-off
between objective values, MOEAs produce a set of optimal solutions rather
than a single solution. Comparison between solutions is established based on
the concept of dominance [14]: given two feasible solutions ! and z2, we say
that 2! dominates 22 (denoted as ! = 22) if, Vi € 1,..,Q, fi(z*) < fi(2?) and
Ji €1,..,Q, fi(x!) < fi(x?). If a feasible solution € X is not dominated by
any other solution in X, then z is defined as a Pareto-optimal solution. MOEAs
alm to obtain the set of all Pareto-optimal solutions, referred to as the Pareto
set, with the set of its corresponding objective-function values called the Pareto
front. Finally, the process of selecting a single or a subset of Pareto-optimal solu-
tions is known as Decision Making, which often involves objective prioritization
or minimum-performance thresholds [10].

2.2 EMO Applications on Energy Management in Smart Homes

Regarding energy management in smart homes, there exists an abundance
of possible objectives to consider [2,5,8], such as power supply reliability,
profit/lifetime maximization, grid-dependency elimination, air quality [7], ther-
mal/visual comfort [6,13,15] and resident preference-satisfaction with respect
to appliance-scheduling [11-13]. Many of these objectives are conflicting, and
thus tackled using EMO approaches. For instance, the resident-oriented objec-
tives of thermal/visual comfort and appliance-scheduling preference satisfaction
may negatively impact the objectives of grid-dependency elimination, emissions
reduction, and billing charges reduction. In [13], the authors propose a hierar-
chical control architecture to estimate optimal set points for user comfort and
energy saving in buildings, utilizing the Multi-Objective Particle Swarm Opti-
mization (MOPSO) algorithm. S.N. Makhadmeh et al. [12] attempt to solve the
Power Scheduling Problem in Smart Homes by introducing a formulation for
the smart home battery that stores power at unsuitable periods and uses it at
suitable ones, and solve the problem using the PSO-based Grey Wolf Optimizer.
Constantinou et al. [1] propose a framework for balancing the trade-off between
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user comfort and energy consumption, utilizing energy flexibility through load
reduction. To the best of our knowledge, no research study has tackled the con-
flicting nature of resident preference satisfaction and billing charges by allowing
energy load to be both shifted and reduced, while limiting CO5 emissions.

3 System Model and Problem Formulation

This section introduces our system model, defines and formulates the proposed
MOP, and introduces the basic terminology used throughout this paper.
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Fig. 1. Multi-Objective Optimization produces a set of appliance-usage schedules offer-
ing optimal trade-offs between satisfying appliance-scheduling preferences and reducing
billing charges, with Decision Making opting for the most energy-efficient schedule.

3.1 System Model and Research Goal

Consider a multi-residential building that, at time ¢ = 1,.., 7', may consume elec-
tricity from two types of sources: renewable (green) energy r; from photovoltaic
(PV) cells, if available, or grid energy otherwise, with the price ¢; per kWh dic-
tated by pricing scheme ¢ = (¢, .., cr). The building is inhabited by residents
u=1,..,U that own a number of shiftable/real-time appliances a = 1, .., A, each
requiring energy el for operation. Furthermore, a resident u sets their appliance-
usage preferences py,, indicating preferred usage of appliance a at time ¢. Usage
xy, of appliance a at time ¢ results in resident u being charged with a cost equal
to e¥ x ¢;. Figure 1 is a representation of the system model.

Research goal: How can a green appliance-schedule x be produced, such that
it simultaneously minimizes both resident dissatisfaction® D and energy costs C,
while limiting deviation from the utilization of green energy GED ?

2 the equivalent of maximizing appliance-scheduling preference satisfaction.
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3.2 Problem Definition

Assume an appliance-usage schedule z = (z1, 22, ..., 27), J = Ux AT, as well as
an appliance-usage preference list p = (p!,p 7...,]DJ , both expressed as binary

vectors and defined as follows:

r! = z¥, € {0,1},

pj szt € {0’1}7
where 7= (u—1)x (A*xT)+ (a—1)«T +1t. (2)

Index j serves to link z%,, p%, to a unique position in vectors x,p, respectively.
Furthermore, given the shifting/real-time nature of the appliances, estimating
the extent to which each resident is satisfied requires a mapping between schedule
x and preferences p. We represent this appliance usage-to-preference (z-to-p)

mapping through vector m = (m', m?, ..., m”), where:
mi = 4T e =1 3)
0 ifa? =0

Shifting step ¢ € [—t, T — t] represents the deviation of the actual time of use of
an appliance from the preferred time. As a result, the three distinct scenarios
regarding preference satisfaction are:

(i) m? = j iff preference p/ = p¥, is fully satisfied by appliance usage 27 at the
requested time ¢ (i = 0).

(i) m? = j+i iff preference p/*% = DPa.1+q 1 partially satisfied by appliance usage
29 at time ¢, instead of the requested t + i.

(iii) m? = 0: No preference is satisfied.

Dissatisfaction Objective D: The residents’ dissatisfaction is expressed as:

mlnD Zza lztl ’

| p |
1, if p/ =1 and $i,mi~" = j)
where d¥, =d’ = {1 —0.50 if pf =1 and Ji,mI~" = j) (4)
0, otherwise

Objective D attempts to minimize the total dissatisfaction (See footnote 3) of
residents. The dissatisfaction of a single resident is defined as the ratio of the sum
of all dissatisfaction-per-preference dy,, to the total number of resident’s u pref-
erences p*. Dissatisfaction d’ represents either full, partial or non-dissatisfaction
of preference p’, based on the existence of a mapping m?~* for it, as explained.
Additionally, formulating the objective as a fraction of the total preferences
ensures higher priority for residents with fewer preferences, as the impact of
dismissing their requests is higher than in the case of more demanding residents.
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Costs Objective C: The residents’ energy costs are defined as:

mminC( :uer{I%aXU}ZZe kK Cp ok Ty (5)

=1t=1

Objective C aims at keeping the maximum total cost for any resident as low
as possible. The proposed objective encourages the satisfaction of resident pref-
erences in a uniform and fair manner, since no penalty is involved in satisfying
the preference of a resident who is not charged as heavily as others.

Green Energy Deviation Objective GED: A green/energy-efficient sched-
ule maximizes the utilization of green energy from renewable sources for the
satisfaction of demand and minimizes the use of grid energy, and consequently
the C'O5 emissions. Hence, we define the energy efficiency of schedule x in terms
of its deviation from the use of green energy, expressed as the total difference
between the energy E; consumed and the available r;, for all ¢:

T
mlnGED Z|Et—7“t l,

t=1

where E; = Z Z er x (6)

u=1a=1
3.3 Multi-objective Optimization Problem Formulation
with Decision Making

Given the conflicting nature between objectives D and C, the problem can be
expressed as an MOP, with objective GED set as a performance-based Decision
Making Heuristic for selecting a final solution from the resulting Pareto-front:

min GED(xz)
st. T€E arzgexgl(in f(@) = (D(z,p),Clc,z,¢)) (7)

4 Green-MOEA /D

This section presents Green-MOEA /D and the Mapping Improvement Heuristic.

4.1 Algorithm Description

MOEA/D [17], an algorithm that works especially well on multi-objective 0-1
knapsack-type problems and allows the incorporation of problem-specific knowl-
edge [9], serves as the basis of the proposed Green-MOEA /D, as summarized in
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Algorithm 1: A population S consisting of appliance-usage schedules s is initial-
ized; both the empty schedule and the schedule that has all appliances active
are added to the population (line 1), to avoid the possibility of unreachable opti-
mal solutions. The proposed problem-specific Mapping Improvement Heuristic
(MIP) is then applied to each solution s (line 2), followed by an evaluation
of s (line 3). Additionally, the MOEA /D-specific parameters of uniform weight
vector ), neighbourhood vector B(i) per solution s, and ideal vector z are ini-
tialized (line 4), with the latter given the optimal value of zero (0) per objective
function. A single iteration of Green-MOEA/D (lines 6-20) includes: For every
solution s’ in the population, two of its neighbouring solutions are randomly
selected as parents and used to create new offspring solutions o', 0? through (i)
Uniform Crossover: Vj € [1,J], swaps 2 between parent solutions s and s>
with a 50% probability, (ii) Bit-Swap Mutation: Vj € [1,J], swaps 2/ with a
random z!,1 € [j + 1,.J] given the mutation probability, and (iii) re-applying
the MIP. After their evaluation, the Pareto-dominant (or otherwise, random)
solution among them is selected as offspring o. Then, neighbours s® of solution
s (included) are examined (lines 14-18) for possible replacement by o: if the
Tchebycheff approach [17] with normalization produces a better evaluation for

Algorithm 1. Green-MOEA /D
Input: p, e, c
Output: Pareto-front {s}

N

N 17 2_7 . 3
1: Init population TP = {s',s% s%.., sV}, s' = 0, s> = 1, uniformly random s* : s
2: Vs € S,MIH(s) // Apply Mapping Improvement Heuristic
3: Vs e S, f(s) — (2), fi1(s) = D(s,p), f2(s) = C(c, s,€) // Evaluation
4:

Init MOEA/D params A = (\',.,AYN);Vi € 1,..,N, B(i) = (»',..,b');z =
(',2%) < (0,0 EP = {}

5: while (v = 0;v < genmaz) and not converged do

6: for i=1to N do

7 Select random b*,b? € B(i) // Selection
8: ql - Sb17q2 - sz

9: OLrossy O2ross — uniformCrossover(q*, ¢*) // Crossover
10: Ob vt — bitSwapMutation(0,oss) // same for 02,,,,, Mutation
11: o' «— MIH(ok ) // same for 02,,,, Improvement
12: flo") « (g) // same for 0?, Evaluation
13: 0 + dominantOrRandom(o', 0%) // Select best offspring
14: for b € B(i) do // Update s* and its neighbourhood
15: if 0= s” or g"°(0|\?, 2) < ¢g"°(s°|\’, 2) then

16: s« o, f(s°) «— f(o0) // g*¢: Tchebycheff function
17: end if

18: end for

19: Update EP // Update EP using Pareto-front {s} € IP
20: end for

21: end while
22: return EP
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0, then s® is replaced. Alternatively, s® is replaced if o dominates s°, as suggested
by Xiang et al. [16]. Finally, external population EP is updated with the dom-
inant solutions of population I P and all dominated solutions are removed. The
process is terminated and EP is returned if the maximum number of iterations
or convergence is reached.

4.2 Mapping Improvement Heuristic Description

Our Mapping Improvement Heuristic (MIH) produces a usage-to-preference (x-
to-p) mapping m, as presented in Sect. 3.2, linking each appliance usage to a
preference and enabling the evaluation of objective D. It consists of two steps:

1. Vjel,J],if 2/ = 2% =1 and p = 1, then set m? « j, else set m’/ « 0.

2. Vjell,J],if 27 = 2% =1 and m’/ = 0, find the shifting step i € [, T — 1]
that minimizes ¢ 44, given that p/** = p% ;=1 and 3l s.t. m' = j +1, then
set m? « j +i. If no such i exists, set 27 = 2%, = 0 (turn appliance OFF).

The first step creates a mapping for all appliance usages 27 that fully satisfy a
preference p/, i.e., shifting step i is equal to zero (0). The second step handles the
rest of usages 27, assigning the closest possible preference to each usage in order
to minimize dissatisfaction, or turns the appliance OFF when no unsatisfied
preference can be found. In this way, the second step allows for energy flexibility
by shifting energy load, contrary to simply reducing it, and improves schedule x
by disabling appliances that do not improve overall preference satisfaction.

5 Experimental Settings

This section describes the datasets used in the experiments, algorithms and
algorithmic settings adopted, and performance metrics considered.

5.1 Datasets

Green-MOEA /D is evaluated on six (6) realistic datasets encapsulating the res-
idents’ preferences p, with each dataset representing the appliance-usage pref-
erences expressed for a variant set of households by their respective residents
during a specific season and date. The preferences were extracted from the
REFIT dataset, a public 500MB dataset which contains real kKW readings of
the power output for the most energy-intensive shiftable/real-time appliances
in 20 households in the UK, between September 2013 and July 2015. The pre-
processing performed in order to extract the preferences included (i) converting
kW readings per second into per-minute readings by removing duplicate records,
(ii) converting per-minute readings into hourly readings by summing them up,
(iii) defining preference (or not) of an appliance, per hour, through threshold
values, and (iv) mapping each household to a resident and assigning the 24-
hour preference-batch for a specific date for that household to the corresponding
resident. Furthermore, the energy consumption per appliance was derived by
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Table 1. The realistic datasets generated by using information from the REFIT public
dataset.

Dataset | Season |Date U |A | T |Households(ID)
Sml_Aut | Autumn | 23/10/2013 |5 |25/24|12345
5
5

Sml_Win | Winter |11/12/2013 25124113456

Sml_Sum | Summer | 02/06/2014 25124112345

Lrg_Aut | Autumn | 29/11/2013 10|49 (24|/12* 3456 789" 10
Lrg_Win | Winter |19/01/2014|10|50(24|/13456789 1013

Lrg-Sum | Summer | 15/06/2014 | 10 147241234 517 18 19 20 21
*date unavailable, closest date retrieved

examining the kW readings in the original dataset. The datasets that resulted
from the above pre-processing can be found in Table 1.

Each dataset also includes renewable energy production data, which is uni-
formly varied based on the number of households and season. The hourly values
were derived by estimating the energy output of a 4.5 kW PV-system per house-
hold, using the standard formula for calculating solar panel energy production:

PPV - Ppeak * (G/Gstandard) —a* (T - Tstandard) (8)

The formula was applied subject to (i) a Pynae = 450 W solar panel with a
temperature-coefficient a = 0.3, (ii) the Standard Test Conditions and (iii) the
average seasonal temperature G and irradiance T in the UK [4]:

Autumn: T : 11, G : 875; Winter: T : 5,G : 750; Summer: T : 18, G : 1000.

Finally, all datasets assume a pricing scheme c subject to a renewable energy
tariff® resulting in prices inversely proportional to r;, thus encouraging con-
sumption during peak-production hours. For example, the maximum price (when
ry = 0) is ¢; = 1.0, the minimum price (when ¢ is the highest) is ¢; = 0.2, and
intermediate prices are ¢; = 0.4,¢; = 0.6 and ¢; = 0.8.

5.2 Algorithms and Algorithmic Settings

The experimental studies described in this section aim at evaluating the effective-
ness of Green-MOEA /D, as well as the choice of its evolutionary operators.
Green-MOEA /D, as described in Sect. 4, is implemented on the jMetal 4.5* Java-
framework for MOO and is compared with the state-of-the-art Pareto-dominance
based Non-Dominated Sorting Genetic Algorithm II (NSGA-ITI) [3]. Each algo-
rithm is executed 20 times subject to the following operators and parameter
values, resulting in an equal number of function evaluations, for fairness:

3 endesa, 2023. Solar Simply, the best tariff for self-consumption with surpluses. LINK:
https://shorturl.ac/7az57.
4 jMetal, 2015. jMetal Web site. LINK: https://jmetal.sourceforge.net.
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— N : 300, genmaz : 500, B : 100 (for Green-MOEA /D only)
Crossover probability: 1.0, Mutation probability: 0.01

The termination criterion is the maximum number of generations, unless con-
vergence (defined as a difference in hyper-volume smaller than le—7 between
3 generations) is reached. Additionally, the Uniform Crossover (UC) operator
adopted by Green-MOEA /D is compared against:

(i) Two-point Crossover ( TPC ): swaps a random sub-vector (x!, .., z¥) between
parent solutions s' and s?, where [,k € [1,J] and [ < k.

(ii) Single-Point Crossover (SPC): swaps a random sub-vector (z!,..,z7)
between parent solutions s! and s2, where [ € [1,J].

The BitSwap Mutation (BSM) operator of Green-MOEA/D is compared
against:

(i) BitFlip Mutation (BFM): Vj € [1.J], reverses bit 27 with a probability equal
to the mutation probability.

(ii) No Mutation (NM): Perform no mutation.

5.3 MOO Performance Metrics

This section discusses the performance metrics used for comparing the MOO
solutions derived from our experiments.

(i) Hypervolume indicator (HV): evaluates the quality of the approximation
to the true Pareto-optimal front by calculating the “size of dominated space” S
by the Pareto front in question. It requires no prior knowledge of the true Pareto-
optimal front, in which case the whole solution domain D can be approximated:

HV = S/D 9)

(ii) Coverage (C)-metric: commonly used for comparing two sets of non-
dominated solutions A and B and proposed by Zitzler and Thiele, C(A, B) cal-
culates the ratio of non-dominated solutions in B dominated by non-dominated
solutions in A, divided by the total number of non-dominated solutions in B.

{xeB||FyeA:y>z|}

(A, B) = | 5]

(10)

C(A, B) = 1 means that all solutions in B are dominated by A.
(iii) Spread (A): The A-metric, proposed by Deb et al. [3], measures the extent
of spread achieved among the obtained solutions, as follows:

_dptdp+ Y |di —d|
A= (11)
dfl + dfg + (N — l)d

where d¢1, dfo is the distance between the extreme and the optimal solution,
per objective. A low A implies a uniform spread, allowing a variety of choices.
(iv) Non-Dominated Solutions (NDS): Usually considered in discrete opti-
mization problems, a high number of Non-Dominated Solutions (NDS), as
explained in Sect. 2.1, represents an adequate number of choices.
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CPU Time: In all experiments, the CPU time is also used for evaluating the
execution time of the algorithms.

6 Experimental Studies

The computing machine used for the experiments consists of an Intel Core i7-
8750H CPU @2.20 GHz and 16 GB of RAM. For conciseness, we hereby refer to
Green-MOEA /D as G-MOEA/D.

6.1 Green-MOEA/D Vs NSGA-II

Table 2 presents the results of our performance comparison between G-MOEA /D
and NSGA-II, across all datasets. G-MOEA /D consistently outperforms NSGA-
IT with regards to HV, A and time, while NSGA-II dominates with regards to
NDS. Regarding HV, G-MOEA/D is slightly better than NSGA-II, with the
difference ranging from 0.2% up to 1.1%. NSGA-II seems more scalable than G-
MOEA/D with regards to A, as the difference in performance from the smaller
to the larger datasets is decreased from 7% to 3%, although G-MOEA /D still
remains superior. NSGA-II also greatly outperforms G-MOEA /D with regards to
NDS, producing about 1.5 times as many non-dominated solutions. Nonethe-
less, G-MOEA/D is a lot faster, with the difference from the smaller to the
larger datasets increasing from 25% up to 72%. Finally, the coverage compar-
isons demonstrate the dominance of G-MOEA /D, with roughly only 1/10th of
its solutions being dominated while dominating more than half of the NSGA-II
solutions. Figure 2 provides a visualization for a subset of the results.

Table 2. Performance comparison between Green-MOEA /D (M) and NSGA-II (N)
on all datasets. Results correspond to averages across 20 distinct runs.

Dataset | Metrics

HV A NDS Time Coverage

N M N M N M| N M | C(NM)|CMN)
Sml_Aut |0.73197 | 0.73482|1.011|0.939 | 148 |95 |1781|1432|0.13 0.54
Sml_Win | 0.66988 | 0.67541 | 1.022 | 0.954 | 143 | 76 | 1390 | 1102 | 0.07 0.61
Smi_Sum | 0.71746 | 0.71942 | 1.018 | 0.944 | 149 |88 | 1473|1145 |0.11 0.62
Lrg_Aut |0.79470 | 0.80400 | 0.982 | 0.969 | 110 | 88 | 3866 | 2668 | 0.13 0.58
Lrg_-Win |0.78166 | 0.78950 | 0.954 | 0.947 | 117 | 104 | 5003 | 3601 | 0.16 0.64
Lrg_Sum | 0.74708 | 0.75088 | 0.993 | 0.955 | 116 | 72 | 3443 | 1995 | 0.22 0.39
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Fig. 2. Pareto-fronts of Green-MOEA/D and NSGA-II on four (4) datasets N =
300, I = 100, genmaa = 500

6.2 Evaluation of Mapping Improvement Heuristic

We evaluate our MIH, as described in Sect. 4.2, against the alternative MH
of only invoking its first step, i.e., we compare the effectiveness of being able
to shift load or reduce load by altering the schedule, against the alternative of
considering exclusively the fully satisfied preferences.

The results in Table 3 show that, on dataset “Lrg_Sum”, MIH has a signif-
icant 0.8% performance increase regarding HV and a 35% increase regarding
A. Although, as a heuristic, MIH is more time consuming, it helps speed algo-
rithm convergence up, resulting in a faster execution time by half a second.
Finally, MIH consistently dominates more than 68% of the solutions of MH on
all datasets.

Table 3. Green-MOEA /D performance comparison between MIH and the alternative
MH. Results correspond to averages across 20 distinct runs.

Dataset: | Algorithm Coverage

Lrg-Sum | MIH | MH

Metric Dataset | C(MIH,MH) | C(MH,MIH)

HV 0.75088 | 0.74443 Sml_Aut |0.73 0.06

A 0.955 1.286 Sml_Win | 0.71 0.07

NDS 72 72 Sml_Sum | 0.78 0.03

Time 1995 2413 Lrg_Aut | 0.68 0.21
Lrg_Win | 0.68 0.22
Lrg_Sum | 0.70 0.15
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Table 4. Green-MOEA /D performance comparison between crossover operators UC,
TPC and SPC on dataset “Lrg_Sum”. Results correspond to averages across 20 runs.

Mut.: | Crossover Coverage

BSM | UC |TPC | SPC U:UC, T:TPC, S:SPC

Metric Mut. | C(T,U)| C(U,T)| C(5,U)| C(US)| C(S,T) C(T,S)
HV 0.750 | 0.745 | 0.735 NM |0 0.88 0 0.87 0.10 0.70
A 0.955 10.948 | 0.951 BFM |0.25 0.56 0.19 0.65 0.34 0.48
NDS |72 76 75 BSM |0.20 0.58 0.11 0.73 0.29 0.52
Time 1995 | 3024 | 2645

6.3 Control Experiments

Table4 presents a two-fold comparison of the performance of G-MOEA/D on
dataset “Lrg_-Sum” by varying crossover operators: On one hand, the crossover
operators are tested while accompanied by the selected BSM mutation opera-
tor, and on the other, coverage comparisons are performed subject to different
mutation operators. This ensures that a dominant crossover operator is not dom-
inant only subject to an accompanying mutation operator. The results show that
UC achieves the best Pareto-front by 0.6% better and 1.5 times faster than the
second-best TPC, albeit having worse A and NDS by 0.73% and 4 NDS, respec-
tively. The coverage comparisons suggest the dominance of UC scales across all
mutation operators, with no more than 25% of its solutions being dominated
and dominating more than half of the other operators’ solutions.

Table 5 presents a two-fold comparison of the performance of G-MOEA /D on
dataset “Lrg_-Sum” by varying mutation operators: On one hand, the mutation
operators are tested while accompanied by the selected UC crossover opera-
tor, and on the other, coverage comparisons are performed subject to different
crossover operators. This ensures that a dominant mutation operator is not dom-
inant only subject to an accompanying crossover operator. The results show that
BSM achieves the best Pareto-front by 0.2% and 0.4% better than NM regarding
HV and A, respectively, and with 4 more N DS, albeit being twice as slow. The
coverage comparisons suggest the dominance of BSM scales across all crossover

Table 5. Green-MOEA /D performance comparison between mutation operators NM,
BFM and BSM on dataset “Lrg_-Sum”. Results correspond to averages across 20 runs.

Cross: | Mutation Coverage

Uuc NM | BFM | BSM N:NM, F:BFM, S:BSM

Metric Cro. | C(F,N)| C(N,F)| C(S,N)| C(N,S)| C(S,F)| C(F,S)
HV 0.748[0.727 [ 0.750 vc 029 |0.38 [0.45 [026 |0.43 [0.28
A 0.959 | 0.944 | 0.955 TPC|0.58 [0.23 |0.82 |0.05 |0.48 [0.28
NDS |68 |77 |72 SPC [0.69 010 |0.85 [0.01 |0.48 |0.29
Time |831 2900 | 1995
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operators, with no more than 30% of its solutions being dominated and domi-
nating more than 40% of the other operators’ solutions.

6.4 Discussion on the Decision Making Heuristic

We evaluate our Decision Making Heuristic (DMH ) by merging all three objec-
tives: GED, D, C, into a single, normalized percentage-value using weighted sum
scalarization with a coefficient of 1/3 per objective. Figure 3 provides (i) a visu-
alization of the Pareto-front achieved by G-MOEA/D on dataset “Lrg_Sum”,
along with the GED of selected solutions, and (ii) the performance of selected
solutions per objective and their weighted sum. It is shown that DMH achieves
a significantly better weighted-sum value than both extreme solutions of the
Pareto front and the random solutions, creating the best trade-off between the
optimization objectives.

Green Energy Deviation (GED) of Pareto-front
Dataset:Lrg_Sum, N=300, I=100, genmax=500
30 T o
G-MOEA/D
25
2 7 Solution Objective |[Weighted
GO @ GED| D | C Sum
by Extreme C'| 243 [ 9.0 | 0.0 63.18
g 15 Extreme D| 247 |0.0|27.54 66.6
by L 22 243 DMH | 208 [2.65[8.42| 19.98
Oy} 0B, T - [Random 1| 226 [5.10[4.86 | 40.10
it - 3 B Random 2| 229 |1.25/12.88| 38.12

I )¢
0 1 2 3 4 5 6 7 8 9
D : Dissatisfaction

Fig. 3. Left: GED of Green-MOEA /D Pareto-front solutions on dataset “Lrg_Sum”.
Right: Evaluation of some solutions for each objective and their weighted sum (%).

7 Conclusion

This paper presents Green-MOEA /D, a Multi-Objective Evolutionary Algo-
rithm based on Decomposition that aims at producing appliance-usage sched-
ules with optimal trade-offs between maximizing the satisfaction of the resi-
dents’ appliance-scheduling preferences and minimizing their billing charges. The
problem is defined and formulated as a Multi-Objective Optimization Problem
with Decision Making, incorporating energy flexibility through load shifting and
reduction. A Mapping Improvement Heuristic is introduced as part of Green-
MOEA/D for energy flexibility management. Furthermore, a Decision Making
Heuristic is proposed for selecting the most energy-efficient schedule from the
set produced by Green-MOEA/D, in terms of limiting deviation from the use
of green energy and, consequently, limiting C'O5 emissions. The experimental
studies, which include evaluations of the Mapping Improvement Heuristic, the
evolutionary operators adopted and the Decision Making Heuristic, show that
Green-MOEA /D clearly outperforms alternative state-of-the-art approaches.
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